Affiliation:
1. College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
2. College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, P. R. China
Abstract
Abstract
Few studies have focused on the role of dimethylglycine sodium salt (DMG-Na) in protecting the redox status of skeletal muscle, although it is reported to be beneficial in animal husbandry. This study investigated the beneficial effects of DMG-Na on the growth performance, longissimus dorsi muscle (LM) redox status, and mitochondrial function in weaning piglets that were intrauterine growth restricted (IUGR). Ten normal birth weight (NBW) newborn piglets (1.53 ± 0.04 kg) and 20 IUGR newborn piglets (0.76 ± 0.06 kg) from ten sows were obtained. All piglets were weaned at 21 days of age and allocated to three groups with ten replicates per group: NBW-weaned piglets fed a common basal diet (N); IUGR weaned piglets fed a common basal diet (I); IUGR weaned piglets fed a common basal diet supplemented with 0.1% DMG-Na (ID). They were slaughtered at 49 days of age to collect the serum and LM samples. Compared with the N group, the growth performance, LM structure, serum, and, within the LM, mitochondrial redox status, mitochondrial respiratory chain complex activity, energy metabolites, redox status-related, cell adhesion-related, and mitochondrial function-related gene expression, and protein expression deteriorated in group I (P < 0.05). The ID group showed improved growth performance, LM structure, serum, and, within the LM, mitochondrial redox status, mitochondrial respiratory chain complex activity, energy metabolites, redox status-related, cell adhesion-related, and mitochondrial function-related gene expression, and protein expression compared with those in the I group (P < 0.05). The above results indicated that the DMG-Na treatment could improve the LM redox status and mitochondrial function in IUGR weaned piglets via the Nuclear factor erythroid 2-related factor 2 (Nrf2)/ Sirtuin 1 (SIRT1)/ Peroxisome proliferator-activated receptorγcoactivator-1α (PGC1α) network, thus improving their growth performance.
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science