Affiliation:
1. Department of Animal Science, Iowa State University, Ames, IA 50014, USA
Abstract
Abstract
This study examined the effects of injectable vitamin C (VC) before transport and duration of transit on feedlot performance, inflammation, and muscle fatigue in cattle. One hundred thirty-two Angus-cross steers (393 ± 4 kg) were stratified by body weight (BW) to a 2 × 2 factorial of intramuscular injection (INJ; 20 mL/steer): VC (250 mg sodium ascorbate/mL) or saline (SAL) and road transit duration (DUR): 18 h (18-h; 1,770 km) or 8 h (8-h; 727 km). On day 0, steers were weighed and given INJ of VC or SAL immediately before transport. Upon return (day 1), BW and blood were collected before steers returned to pens equipped with GrowSafe bunks. Steers were weighed on days 0, 1, 7, 15, 30, 31, 54, and 55. Data were analyzed via ProcMixed of SAS (experimental unit = steer; 32 to 34 steers/treatment) with fixed effects of INJ, DUR, and the interaction. Blood was collected on days −5, 1, 2, 3, and 7 (n = 9 steers/treatment); blood parameters were analyzed as repeated measures with the repeated effect of day. Area under the curve (AUC) for plasma ferric reducing antioxidant power (FRAP) was calculated using R. Final BW was greater for 8 h compared to 18 h (P = 0.05) with no effect of INJ or interaction (P ≥ 0.51). Dry matter intake (DMI) from days 1 to 7 was greater for VC-8, intermediate for VC-18 and SAL-18, and least for SAL-8 (P = 0.02). Overall, DMI tended to be greatest for SAL-18, intermediate for VC-18 and VC-8, and least for SAL-8 (P = 0.08). Days 7 to 31 gain:feed (G:F) was greatest for VC-18 compared to other treatments (INJ × DUR, P = 0.05), and there was no effect of treatment on overall G:F (P ≥ 0. 19). There was no INJ or INJ × DAY (P ≥ 0.17) effect on serum lactate, haptoglobin, or non-esterified fatty acid. However, these blood parameters were greater on day 1 for 18 h compared to 8 h, and both treatments returned to near baseline by day 3 (DUR × DAY, P < 0.01). Plasma ascorbate concentrations on day 1 were greater for VC compared to SAL and returned to baseline by day 2 (INJ × DAY, P < 0.01). Plasma FRAP AUC from days −5 to 3 was greatest for VC-18, intermediate for VC-8 and SAL-8, and least for SAL-18 (INJ × DAY, P = 0.02). This suggests an antioxidant prior to long-haul transit positively influenced antioxidant capacity; however, VC did not improve overall post-transit performance. Although longer transit duration increased indicators of muscle fatigue and inflammation, post-transit performance was not appreciably different between transit durations.
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science
Reference33 articles.
1. Ether extract in animal feeds. Method 920.39;AOAC.,1999
2. Protein (crude) in animal feed: combustion method. Method 990.03;AOAC.,1999
3. Amylase-treated neutral detergent fiber in feeds. Method 2002.04;AOAC.,2005
4. Effect of transport and commingling on the acute-phase protein response, growth, and feed intake of newly weaned beef calves;Arthington;J. Anim. Sci,2003
5. Ascorbate metabolism and its regulation in animals;Bánhegyi;Free Radic. Biol. Med,1997