Affiliation:
1. Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
2. USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
3. Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
Abstract
Abstract
Previous research demonstrates that supplementing 0.20% l-glutamine (GLN) in the diets of newly weaned and transported pigs improves growth rate to a similar extent as providing dietary antibiotics (AB). However, research comparing the effects of GLN vs. AB on intestinal physiology and the microbiome is limited. Therefore, the study objective was to compare the effects of supplementing nursery diets with GLN, AB, or no dietary antibiotics (NA) on intestinal physiology and the microbiome of pigs in a production environment following weaning and transport. Mixed-sex piglets (N = 480; 5.62 ± 0.06 kg body weight [BW]) were weaned (18.4 ± 0.2 d of age) and transported for 12 h in central Indiana, for two replicates, during the summer of 2016 and the spring of 2017. Pens were blocked by BW and allotted to one of the three dietary treatments (n = 10 pens/dietary treatment/replicate [8 pigs/pen]): AB (chlortetracycline [441 ppm] + tiamulin [38.6 ppm]), GLN (0.20% as-fed), or NA fed for 14 d. From day 14 to 34, pigs were fed common AB-free diets in two phases. On day 33, villus height:crypt depth tended to be increased (P = 0.07; 7.0%) in GLN and AB pigs vs. NA pigs. On day 33, glucagon-like peptide 2 (GLP-2) mRNA abundance was decreased (P = 0.01; 50.3%) in GLN and NA pigs vs. AB pigs. Crypt depth was increased overall on day 33 (P = 0.01; 16.2%) during the spring replicate compared with the summer replicate. Villus height:crypt depth was reduced (P = 0.01; 9.6%) during the spring replicate compared with the summer replicate on day 33. On day 13, tumor necrosis factor-alpha and occludin mRNA abundance was increased (P ≤ 0.04; 45.9% and 106.5%, respectively) and zonula occludens-1 mRNA abundance tended to be greater (P = 0.10; 19.2%) in the spring replicate compared with the summer replicate. In addition, AB pigs had increased (P = 0.01; 101.3%) GLP-2 mRNA abundance compared with GLN and NA pigs. Microbiome analysis indicated that on day 13, dietary treatment altered the microbiota community structure (P = 0.03). Specifically, the AB pigs tended to be distinct from both the NA and GLN pigs (P = 0.08), and Lactobacillus was increased nearly 2-fold in AB compared with NA pigs (q = 0.04) and GLN pigs (q = 0.22). In conclusion, GLN supplementation tended to improve some morphological markers of intestinal health similarly to AB pigs, while the microbiome composition in GLN pigs was more similar to NA pigs than AB pigs.
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science
Reference72 articles.
1. Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark;Bager,2001
2. Comparison of the immune competence of Turopolje, German Landrace × Turopolje, and German Landrace × Pietrain pigs after PRRSV vaccination;Ballweg;Vet. Immunol. Immunopathol,2016
3. Safety and efficacy of;Bampidis;EFSA J,2020
4. Measuring β-diversity with species abundance data;Barwell;J. Anim. Ecol,2015
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献