Effects of dietary macronutrient profile on apparent total tract macronutrient digestibility and fecal microbiota, fermentative metabolites, and bile acids of female dogs after spay surgery

Author:

Phungviwatnikul Thunyaporn1,Alexander Celeste2ORCID,Do Sungho1,He Fei1,Suchodolski Jan S3,de Godoy Maria R C12,Swanson Kelly S124ORCID

Affiliation:

1. Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA

2. Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA

3. Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, Texas A&M University, College Station, TX 77843, USA

4. Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL 61801, USA

Abstract

Abstract Obesity and estrogen reduction are known to affect the gut microbiota and gut microbial-derived metabolites in some species, but limited information is available in dogs. The aim of this study was to determine the effects of dietary macronutrient profile on apparent total tract macronutrient digestibility, fecal microbiota, and fecal metabolites of adult female dogs after spay surgery. Twenty-eight adult intact female beagles (age: 3.02 ± 0.71 yr, BW: 10.28 ± 0.77 kg; BCS: 4.98 ± 0.57) were used. After a 5-wk baseline phase (week 0), 24 dogs were spayed and randomly allotted to one of three experimental diets (n = 8 per group): 1) control (CO) containing moderate protein and fiber (COSP), 2) high-protein, high-fiber (HPHF), or 3) high-protein, high-fiber plus omega-3 and medium-chain fatty acids (HPHFO). Four dogs were sham-operated and fed CO (COSH). All dogs were fed to maintain BW for 12 wk after spay and then allowed to consume twice that amount for 12 wk. Fecal samples were collected at weeks 0, 12, and 24 for digestibility, microbiota, and metabolite analysis. All data were analyzed using repeated measures and linear mixed models procedure of SAS 9.4, with results reported as a change from baseline. Apparent organic matter and energy digestibilities had greater decreases in HPHF and HPHFO than COSH and COSP. Increases in fecal acetate, total short-chain fatty acids, and secondary bile acids were greater and decreases in primary bile acids were greater in HPHF and HPHFO. Principal coordinates analysis of weighted UniFrac distances revealed that HPHF and HPHFO clustered together and separated from COSH and COSP at weeks 12 and 24, with relative abundances of Faecalibacterium, Romboutsia, and Fusobacterium increasing to a greater extent and Catenibacterium, Bifidobacterium, Prevotella 9, Eubacterium, and Megamonas decreasing to a greater extent in HPHF or HPHFO. Our results suggest that high-protein, high-fiber diets alter nutrient and energy digestibilities, fecal metabolite concentrations, and fecal gut microbiota, but spay surgery had minor effects. Future research is needed to investigate how food intake, nutrient profile, and changes in hormone production influence gut microbiota and metabolites of dogs individually and how this knowledge may be used to manage spayed pets.

Funder

Perfect Companion Group Co., Ltd

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3