Effects of dietary inclusion of Radix Bupleuri extract on the growth performance, and ultrastructural changes and apoptosis of lung epithelial cells in broilers exposed to atmospheric ammonia

Author:

Bai Shiping1ORCID,Peng Xi2,Wu Caimei1,Cai Tong2,Liu Jiangfeng3,Shu Gang4

Affiliation:

1. Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China

2. Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China

3. School of Intelligence Technology, Geely University of China, Chengdu 641423, China

4. College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China

Abstract

Abstract To explore whether Radix Bupleuri extract (RBE) could protect lung injury of broilers under ammonia (NH3) exposure, 360 one-d-old male broilers were randomly allocated to four groups of six replicates each in a 2 × 2 factorial design with two diets (the basal diet [control; CON] and the basal diet supplemented with RBE [RB]) and two air conditions (normal condition [<2 ppm of NH3; NOR] and NH3 exposure [70 ppm of NH3; NH70]). The RB diet contained 80 mg saikosaponins/kg diet. On day 7, the lung tissues were collected and the lung epithelial cells (LEC) were isolated. Our experimental results showed that the NH3 exposure decreased body weight gain and feed intake irrespective of dietary treatments during days 1 to 7. However, the RBE addition decreased feed consumption to body weight gain ratio in broilers under NH70 conditions. In the LEC of CON-fed broilers under NH70 conditions, Golgi stacks showed the dilation of cisternaes and reduced secretory vesicles, mitochondria enlarged, the inner membrane of mitochondria became obscure, and the cristae of mitochondria ruptured, whereas only a mild enlargement of Golgi cisternaes and the part rupture of mitochondrial cristaes occurred in the LEC of RB-fed broilers under NH70 conditions. The NH3 exposure increased malondialdehyde (MDA) level, but decreased total antioxidant capacity (T-AOC) in the lungs of CON-fed broilers. However, the RBE addition decreased MDA level and increased T-AOC in the lungs of broilers under NH70 conditions. Simultaneously, the NH3 exposure increased apoptotic rate (AR), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) level in the isolated LEC of CON-fed broilers. The RBE addition decreased AR, MMP, and ROS in the isolated LEC of broilers under NH70 condition. Besides, the NH3 exposure increased mRNA expression of B-cell lymphoma-2 associated X protein (BAX), caspase-3, and tumor necrosis factor α (TNF-α), but increased interferon γ (IFN-γ) mRNA abundance in the lungs of CON-fed broilers. The RBE supplement decreased mRNA levels of BAX, caspase-3, and TNF-α, but increased IFN-γ, interleukin (IL)-4, and IL-17 mRNA levels in the lungs of broilers under NH70 conditions. These results indicated that dietary RBE addition alleviated NH3 exposure-induced intercellular ultrastructural damage via mitochondrial apoptotic pathway, possibly due to RBE-induced increase of antioxidant capacity and immunomodulatory function in the lungs of broilers under NH3 exposure.

Funder

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Reference68 articles.

1. The effect of early feeding and feed additives on lymphoid organs, intestinal microbiology and meat peroxidation of broiler;Abdulammeer;Life Sci. J,2016

2. Effect of atmospheric ammonia on the surface ultrastructure of the lung and trachea of broiler chicks;Al-Mashhadani;Poult. Sci,1985

3. Effects of dietary inclusion of Radix Bupleuri and Radix Astragali extracts on the performance, intestinal inflammatory cytokines expression, and hepatic antioxidant capacity in broilers exposed to high temperature;Bai;Anim. Feed Sci. Technol,2020

4. Isolation and characterization of rat primary lung cells;Bundschuh;In Vitro Cell. Dev. Biol. Anim,1995

5. Malondialdehyde (MDA)-product of lipid peroxidation as marker of homeostasis disorders and aging;Calyniuk;Ann. Acad. Med. Siles,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3