Selectivity Conversion of Protease Inhibitory Antibodies

Author:

Lopez Tyler1,Ramirez Aaron1,Benitez Chris1,Mustafa Zahid1,Pham Henry1,Sanchez Ramon1,Ge Xin1

Affiliation:

1. Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, CA, USA

Abstract

ABSTRACT Background: Proteases are one of the largest pharmaceutical targets for drug developments. Their dysregulations result in a wide variety of diseases. Because proteolytic networks usually consist of protease family members that share high structural and catalytic homology, distinguishing them using small molecule inhibitors is often challenging. To achieve specific inhibition, this study described a novel approach for the generation of protease inhibitory antibodies. As a proof of concept, we aimed to convert a matrix metalloproteinase (MMP)-14 specific inhibitor to MMP-9 specific inhibitory antibodies with high selectivity. Methods: An error-prone single-chain Fv (scFv) library of an MMP-14 inhibitor 3A2 was generated for yeast surface display. A dual-color competitive FACS was developed for selection on MMP-9 catalytic domain (cdMMP-9) and counter-selection on cdMMP-14 simultaneously, which were fused/conjugated with different fluorophores. Isolated MMP-9 inhibitory scFvs were biochemically characterized by inhibition assays on MMP-2/-9/-12/-14, proteolytic stability tests, inhibition mode determination, competitive ELISA with TIMP-2 (a native inhibitor of MMPs), and paratope mutagenesis assays. Results: We converted an MMP-14 specific inhibitor 3A2 into a panel of MMP-9 specific inhibitory antibodies with dramatic selectivity shifts of 690–4,500 folds. Isolated scFvs inhibited cdMMP-9 at nM potency with high selectivity over MMP-2/-12/-14 and exhibited decent proteolytic stability. Biochemical characterizations revealed that these scFvs were competitive inhibitors binding to cdMMP-9 near its reaction cleft via their CDR-H3s. Conclusions: This study developed a novel approach able to convert the selectivity of inhibitory antibodies among closely related protease family members. This methodology can be directly applied for mAbs inhibiting many proteases of biomedical importance. Statement of Significance To achieve high selectivity required for therapies, we developed a novel approach for the generation of protease inhibitory antibodies with nM potency and decent proteolytic stability. The methodology demonstrated here can be readily applied to many proteases of biomedical importance.

Funder

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Reference49 articles.

1. Proteases as drug targets;Docherty;Biochem Soc Symp,2003

2. Targeting proteases: successes, failures and future prospects;Turk;Nat Rev Drug Discov,2006

3. Bond proteases: multifunctional enzymes in life and disease;López-Otín;J Biol Chem,2008

4. Extracellular proteases as targets for drug development;Cudic;Curr Protein Pept Sci,2009

5. Emerging principles in protease-based drug discovery;Drag;Nat Rev Drug Discov,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3