Superabsorbent poly(acrylic acid) and antioxidant poly(ester amide) hybrid hydrogel for enhanced wound healing

Author:

Zhang Jianhua12,Hu Junfei2,Chen Baoshu1,Zhao Tianbao134,Gu Zhipeng25ORCID

Affiliation:

1. School of Materials Science and Engineering, Xihua University, Chengdu 610039, P.R. China

2. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China

3. College of Chemistry, Sichuan University, Chengdu 610065, P.R. China

4. Yibin Tianyuan Grp Co., Ltd., Yibin, Sichuan Province 644000, P.R. China

5. Research Institute of Sun Yat-Sen University, Shenzhen 518057, P.R. China

Abstract

Abstract Wound healing dressing is increasingly needed in clinical owing to the large quantity of skin damage annually. Excessive reactive oxygen species (ROS) produced through internal or external environmental influences can lead to lipid peroxidation, protein denaturation, and even DNA damage, and ultimately have harmful effects on cells. Aiming to sufficiently contact with the wound microenvironment and scavenge ROS, superabsorbent poly (acrylic acid) and antioxidant poly (ester amide) (PAA/PEA) hybrid hydrogel has been developed to enhance wound healing. The physical and chemical properties of hybrid hydrogels were studied by Fourier-transform infrared (FTIR) absorption spectrum, compression, swelling, degradation, etc. Besides, the antioxidant properties of hybrid hydrogels can be investigated through the free radical scavenging experiment, and corresponding antioxidant indicators have been tested at the cellular level. Hybrid hydrogel scaffolds supported the proliferation of human umbilical vein endothelial cells and fibroblasts, as well as accelerated angiogenesis and skin regeneration in wounds. The healing properties of wounds in vivo were further assessed on mouse skin wounds. Results showed that PAA/PEA hybrid hydrogel scaffolds significantly accelerated the wound healing process through enhancing granulation formation and re-epithelialization. In summary, these superabsorbent and antioxidative hybrid hydrogels could be served as an excellent wound dressing for full-thickness wound healing.

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3