A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process

Author:

Gong Xianghui12ORCID,Liang Zhuqing12,Yang Yongxing1,Liu Haifeng1,Ji Jing1,Fan Yubo123

Affiliation:

1. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, People’s Republic of China

2. Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, People’s Republic of China

3. National Research Center for Rehabilitation Technical Aids, Beijing 100176, People’s Republic of China

Abstract

Abstract Development of viable cell estimation method without sacrificing proliferation and functions of cells cultured on regenerative biomaterials is essential for regenerative engineering. Cytotoxicity and depletion of resazurin are critical but often overlooked limitations that hindered applications of resazurin in viable cell estimation. The present work found that cytotoxicity and depletion of resazurin depended on cell concentration, resazurin concentration and resazurin incubation time. A simple strategy which only allowed cells to incubate with resazurin during each measurement was developed to eliminate negative effects of resazurin. This strategy was verified by monitoring proliferation of MC3T3-E1 preosteoblasts on poly(d,l-lactic acid) scaffold during a continuous 3D culture process for up to 21 days, comparing the accuracy with MTT assay which is a destructive assay with high sensitivity and accuracy and commonly used in regenerative engineering and comparing viability, proliferation and differentiation functions of MC3T3-E1, which were treated with/without this strategy for nondestructive evaluation. This method showed comparable linearity of standard curve and characteristics of growth curve to MTT assay. No major negative effects of this method on MC3T3-E1 viability and functions were found. Our work highlighted the importance of the concentration and incubation time of resazurin in designing application-specific nondestructive viability assay and would be helpful in improving the implanted medical devices as well as in regenerative engineering.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan

International Joint Research Center of Aerospace Biotechnology

344 Medical Engineering from Ministry of Science and Technology of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3