An approach to determining anthocyanin synthesis enzyme gene expression in an evolutionary context: an example from Erica plukenetii

Author:

Le Maitre N C12,Pirie M D34,Bellstedt D U1

Affiliation:

1. Biochemistry Department, Stellenbosch University, Private Bag X1, Matieland, South Africa

2. University of the Free State, Bloemfontein, South Africa

3. Johannes Gutenberg-Universität, Mainz, Mainz, Germany

4. University Museum, University of Bergen, Postboks, Bergen, Norway

Abstract

Abstract Background and Aims Floral colour in angiosperms can be controlled by variations in the expression of the genes of the anthocyanin pathway. Floral colour shifts influence pollinator specificity. Multiple shifts in floral colour occurred in the diversification of the genus Erica (Ericaceae), from plesiomorphic pink to, for example, red or white flowers. Variation in anthocyanin gene expression and its effects on floral colour in the red-, pink- and white-flowered Erica plukenetii species complex was investigated. Methods Next generation sequencing, reverse transcriptase PCR and real-time reverse transcriptase quantitative PCR were used to quantify anthocyanin gene expression. Key Results Non-homologous mutations causing loss of expression of single genes were found, indicating that the cause was likely to be mutations in transcription factor binding sites upstream of the 5′-untranslated region of the genes, and this was confirmed by sequencing. Conclusions Independent evolution and subsequent loss of expression of anthocyanin genes may have influenced diversification in the E. plukenetii species complex. The approach developed here should find more general application in studies on the role of floral colour shifts in diversification.

Funder

South African National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3