Shallow plant-dominated lakes – extreme environmental variability, carbon cycling and ecological species challenges

Author:

Sand-Jensen Kaj1,Andersen Mikkel René12,Martinsen Kenneth Thorø1,Borum Jens1,Kristensen Emil1,Kragh Theis1

Affiliation:

1. Freshwater Biological Laboratory, Biological Institute, University of Copenhagen, Copenhagen, Denmark

2. Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, Ireland

Abstract

Abstract Background Submerged plants composed of charophytes (green algae) and angiosperms develop dense vegetation in small, shallow lakes and in littoral zones of large lakes. Many small, oligotrophic plant species have declined due to drainage and fertilization of lakes, while some tall, eutrophic species have increased. Although plant distribution has been thoroughly studied, the physiochemical dynamics and biological challenges in plant-dominated lakes have been grossly understudied, even though they may offer the key to species persistence. Scope Small plant-dominated lakes function as natural field laboratories with eco-physiological processes in dense vegetation dictating extreme environmental variability, intensive photosynthesis and carbon cycling. Those processes can be quantified on a whole lake basis at high temporal resolution by continuously operating sensors for light, temperature, oxygen, etc. We explore this hitherto hidden world. Conclusions Dense plant canopies attenuate light and wind-driven turbulence and generate separation between warm surface water and colder bottom waters. Daytime vertical stratification becomes particularly strong in dense charophyte vegetation, but stratification is a common feature in small, shallow lakes also without plants. Surface cooling at night induces mixing of the water column. Daytime stratification in plant stands may induce hypoxia or anoxia in dark bottom waters by respiration, while surface waters develop oxygen supersaturation by photosynthesis. Intensive photosynthesis and calcification in shallow charophyte lakes depletes dissolved inorganic carbon (DIC) in surface waters, whereas DIC is replenished by respiration and carbonate dissolution in bottom waters and returned to surface waters before sunrise. Extreme diel changes in temperature, DIC and oxygen in dense vegetation can induce extensive rhythmicity of photosynthesis and respiration and become a severe challenge to the survival of organisms. Large phosphorus pools are bound in plant tissue and carbonate precipitates. Future studies should test the importance of this phosphorus sink for ecosystem processes and competition between phytoplankton and plants.

Funder

Carlsberg Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference105 articles.

1. Buried alive: Aquatic plants survive in ‘ghost ponds’ under agricultural fields;Alderton;Biological Conservation,2017

2. Extreme diel oxygen and carbon cycles in shallow vegetated lakes;Andersen;Proceedings of the Royal Society B,2017

3. Profound daily vertical stratification and mixing in a small, shallow, wind-exposed lake with submerged macrophytes;Andersen;Aquatic Sciences,2017

4. The carbon pump supports high primary production in a shallow lake;Andersen;Aquatic Sciences,2019

5. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints;Bakker;Hydrobiologia,2013

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3