The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides

Author:

Tschaplinski Timothy James1,Abraham Paul E1,Jawdy Sara S1,Gunter Lee E1,Martin Madhavi Z1,Engle Nancy L1,Yang Xiaohan1,Tuskan Gerald A1

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Abstract Background and Aims The use of woody crops for Quad-level (approx. 1 × 1018 J) energy production will require marginal agricultural lands that experience recurrent periods of water stress. Populus species have the capacity to increase dehydration tolerance by lowering osmotic potential via osmotic adjustment. The aim of this study was to investigate how the inherent genetic potential of a Populus clone to respond to drought interacts with the nature of the drought to determine the degree of biochemical response. Methods A greenhouse drought stress study was conducted on Populus deltoides ‘WV94’ and the resulting metabolite profiles of leaves were determined by gas chromatography–mass spectrometry following trimethylsilylation for plants subjected to cyclic mild (–0.5 MPa pre-dawn leaf water potential) drought vs. cyclic severe (–1.26 MPa) drought in contrast to well-watered controls (–0.1 MPa) after two or four drought cycles, and in contrast to plants subjected to acute drought, where plants were desiccated for up to 8 d. Key Results The nature of drought (cyclic vs. acute), frequency of drought (number of cycles) and the severity of drought (mild vs. severe) all dictated the degree of osmotic adjustment and the nature of the organic solutes that accumulated. Whereas cyclic drought induced the largest responses in primary metabolism (soluble sugars, organic acids and amino acids), acute onset of prolonged drought induced the greatest osmotic adjustment and largest responses in secondary metabolism, especially populosides (hydroxycinnamic acid conjugates of salicin). Conclusions The differential adaptive metabolite responses in cyclic vs. acute drought suggest that stress acclimation occurs via primary metabolism in response to cyclic drought, whereas expanded metabolic plasticity occurs via secondary metabolism following severe, acute drought. The shift in carbon partitioning to aromatic metabolism with the production of a diverse suite of higher order salicylates lowers osmotic potential and increases the probability of post-stress recovery.

Funder

U.S. Department of Energy

Office of Biological and Environmental Research

Center for Bioenergy Innovation

Office of Science, OBER

UT-Battelle, LLC

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3