Robust knowledge-guided biclustering for multi-omics data

Author:

Zhang Qiyiwen12,Chang Changgee3,Long Qi12

Affiliation:

1. Department of Biostatistics , Epidemiology and Informatics, , 19104, PA, USA

2. University of Pennsylvania , Epidemiology and Informatics, , 19104, PA, USA

3. Department of Biostatistics and Health Data Science, Indiana University School of Medicine , Indianapolis, IN 46202, USA

Abstract

Abstract Biclustering is a useful method for simultaneously grouping samples and features and has been applied across various biomedical data types. However, most existing biclustering methods lack the ability to integratively analyze multi-modal data such as multi-omics data such as genome, transcriptome and epigenome. Moreover, the potential of leveraging biological knowledge represented by graphs, which has been demonstrated to be beneficial in various statistical tasks such as variable selection and prediction, remains largely untapped in the context of biclustering. To address both, we propose a novel Bayesian biclustering method called Bayesian graph-guided biclustering (BGB). Specifically, we introduce a new hierarchical sparsity-inducing prior to effectively incorporate biological graph information and establish a unified framework to model multi-view data. We develop an efficient Markov chain Monte Carlo algorithm to conduct posterior sampling and inference. Extensive simulations and real data analysis show that BGB outperforms other popular biclustering methods. Notably, BGB is robust in terms of utilizing biological knowledge and has the capability to reveal biologically meaningful information from heterogeneous multi-modal data.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge-guided learning methods for integrative analysis of multi-omics data;Computational and Structural Biotechnology Journal;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3