ACE configurator for ELISpot: optimizing combinatorial design of pooled ELISpot assays with an epitope similarity model

Author:

Lee Jin Seok123ORCID,Karthikeyan Dhuvarakesh123ORCID,Fini Misha14,Vincent Benjamin G156423,Rubinsteyn Alex1237

Affiliation:

1. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, NC

2. Computational Medicine Program, UNC School of Medicine , Chapel Hill, NC , USA

3. Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine , Chapel Hill, NC , USA

4. Department of Microbiology and Immunology, UNC School of Medicine , Chapel Hill, NC , USA

5. Division of Hematology , Department of Medicine, , Chapel Hill, NC

6. University of North Carolina at Chapel Hill , Department of Medicine, , Chapel Hill, NC

7. Department of Genetics, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 USA

Abstract

Abstract The enzyme-linked immunosorbent spot (ELISpot) assay is a powerful in vitro immunoassay that enables cost-effective quantification of antigen-specific T-cell reactivity. It is used widely in the context of cancer and infectious diseases to validate the immunogenicity of predicted epitopes. While technological advances have kept pace with the demand for increased throughput, efforts to increase scale are bottlenecked by current assay design and deconvolution methods, which have remained largely unchanged. Current methods for designing pooled ELISpot experiments offer limited flexibility of assay parameters, lack support for high-throughput scenarios and do not consider peptide identity during pool assignment. We introduce the ACE Configurator for ELISpot (ACE) to address these gaps. ACE generates optimized peptide-pool assignments from highly customizable user inputs and handles the deconvolution of positive peptides using assay readouts. In this study, we present a novel sequence-aware pooling strategy, powered by a fine-tuned ESM-2 model that groups immunologically similar peptides, reducing the number of false positives and subsequent confirmatory assays compared to existing combinatorial approaches. To validate ACE’s performance on real-world datasets, we conducted a comprehensive benchmark study, contextualizing design choices with their impact on prediction quality. Our results demonstrate ACE’s capacity to further increase precision of identified immunogenic peptides, directly optimizing experimental efficiency. ACE is freely available as an executable with a graphical user interface and command-line interfaces at https://github.com/pirl-unc/ace.

Funder

National Institutes of Health Clinical Center

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3