Poincaré maps for visualization of large protein families

Author:

Susmelj Anna Klimovskaia12ORCID,Ren Yani3,Vander Meersche Yann3ORCID,Gelly Jean-Christophe3ORCID,Galochkina Tatiana3ORCID

Affiliation:

1. Swiss Data Science Center, ETH Zurich and EPFL , Zurich , Switzerland

2. Biognosys AG , Wagistrasse 21, 8952 Schlieren , Switzerland

3. Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR , F-75014 Paris , France

Abstract

Abstract In the era of constantly increasing amounts of the available protein data, a relevant and interpretable visualization becomes crucial, especially for tasks requiring human expertise. Poincaré disk projection has previously demonstrated its important efficiency for visualization of biological data such as single-cell RNAseq data. Here, we develop a new method PoincaréMSA for visual representation of complex relationships between protein sequences based on Poincaré maps embedding. We demonstrate its efficiency and potential for visualization of protein family topology as well as evolutionary and functional annotation of uncharacterized sequences. PoincaréMSA is implemented in open source Python code with available interactive Google Colab notebooks as described at https://www.dsimb.inserm.fr/POINCARE_MSA.

Funder

Ministry of Research

Université Paris Cité

National Institute for Health and Medical Research

Laboratory of Excellence GR-Ex

French National Research Agency

High Performance Computing

Institut du Développement et Des Ressources en Informatique Scientifique, France

Très Grand Centre de Calcul

Grand Equipement National de Calcul Intensif, France

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference28 articles.

1. Using deep learning to annotate the protein universe;Bileschi;Nat Biotechnol,2022

2. Visualizing data using t-SNE;Maaten;J Machine Learning Res,2008

3. UMAP: uniform manifold approximation and projection;McInnes;J Open Source Softw,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3