COWID: an efficient cloud-based genomics workflow for scalable identification of SARS-COV-2

Author:

Lim Hendrick Gao-Min123ORCID,Fann Yang C45,Lee Yuan-Chii Gladys12ORCID

Affiliation:

1. Graduate Institute of Biomedical Informatics , College of Medical Science and Technology, , Taipei , Taiwan 11031

2. Taipei Medical University , College of Medical Science and Technology, , Taipei , Taiwan 11031

3. Department of Medical Research, Tzu Chi Hospital Indonesia, Pantai Indah Kapuk, Greater Jakarta , Indonesia 14470

4. IT and Bioinformatics Program , Division of Intramural, , Bethesda, Maryland , USA 20892

5. National Institute of Neurological Disorders and Stroke, National Institutes of Health , Division of Intramural, , Bethesda, Maryland , USA 20892

Abstract

Abstract Implementing a specific cloud resource to analyze extensive genomic data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a challenge when resources are limited. To overcome this, we repurposed a cloud platform initially designed for use in research on cancer genomics (https://cgc.sbgenomics.com) to enable its use in research on SARS-CoV-2 to build Cloud Workflow for Viral and Variant Identification (COWID). COWID is a workflow based on the Common Workflow Language that realizes the full potential of sequencing technology for use in reliable SARS-CoV-2 identification and leverages cloud computing to achieve efficient parallelization. COWID outperformed other contemporary methods for identification by offering scalable identification and reliable variant findings with no false-positive results. COWID typically processed each sample of raw sequencing data within 5 min at a cost of only US$0.01. The COWID source code is publicly available (https://github.com/hendrick0403/COWID) and can be accessed on any computer with Internet access. COWID is designed to be user-friendly; it can be implemented without prior programming knowledge. Therefore, COWID is a time-efficient tool that can be used during a pandemic.

Funder

National Science and Technology Council of the Taiwanese Government

Seven Bridges Cancer Research Data Commons Cloud Resource

National Cancer Institute

National Institutes of Health

National Institute of Neurological Disorders and Stroke

National Institutes of Health of Bethesda

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3