Sars-escape network for escape prediction of SARS-COV-2

Author:

Singh Bist Prem1,Tayara Hilal2,To Chong Kil13

Affiliation:

1. Jeonbuk National University Department of Electronics & Information Engineering, , Jeonju-si, 54896 Jeollabuk-do , South Korea

2. Jeonbuk National University School of International Engineering & Science, , Jeonju-si, 54896 Jeollabuk-do , South Korea

3. Jeonbuk National University Advances Electronics & Information Research Center, , Jeonju-si, 54896 Jeollabuk-do , South Korea

Abstract

Abstract Motivation Viruses have coevolved with their hosts for over millions of years and learned to escape the host’s immune system. Although not all genetic changes in viruses are deleterious, some significant mutations lead to the escape of neutralizing antibodies and weaken the immune system, which increases infectivity and transmissibility, thereby impeding the development of antiviral drugs or vaccines. Accurate and reliable identification of viral escape mutational sequences could be a good indicator for therapeutic design. We developed a computational model that recognizes significant mutational sequences based on escape feature identification using natural language processing along with prior knowledge of experimentally validated escape mutants. Results Our machine learning-based computational approach can recognize the significant spike protein sequences of severe acute respiratory syndrome coronavirus 2 using sequence data alone. This modelling approach can be applied to other viruses, such as influenza, monkeypox and HIV using knowledge of escape mutants and relevant protein sequence datasets. Availability Complete source code and pre-trained models for escape prediction of severe acute respiratory syndrome coronavirus 2 protein sequences are available on Github at https://github.com/PremSinghBist/Sars-CoV-2-Escape-Model.git. The dataset is deposited to Zenodo at: doi: 10.5281/zenodo.7142638. The Python scripts are easy to run and customize as needed. Contact premsing212@jbnu.ac.kr

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3