Prioritizing prognostic-associated subpopulations and individualized recurrence risk signatures from single-cell transcriptomes of colorectal cancer

Author:

Tong Mengsha123,Lin Yuxiang3,Yang Wenxian4,Song Jinsheng12,Zhang Zheyang123,Xie Jiajing3,Tian Jingyi12,Luo Shijie12,Liang Chenyu123,Huang Jialiang123,Yu Rongshan354

Affiliation:

1. State Key Laboratory of Cellular Stress Biology , School of Life Sciences, Faculty of Medicine and Life Sciences, , Xiamen, Fujian 361102 , China

2. Xiamen University , School of Life Sciences, Faculty of Medicine and Life Sciences, , Xiamen, Fujian 361102 , China

3. National Institute for Data Science in Health and Medicine, Xiamen University , Xiamen, Fujian 361102 , China

4. Aginome Scientific , Xiamen, Fujian 316005 , China

5. School of Informatics, Xiamen University , Xiamen 316000 , China

Abstract

AbstractColorectal cancer (CRC) is one of the most common gastrointestinal malignancies. There are few recurrence risk signatures for CRC patients. Single-cell RNA-sequencing (scRNA-seq) provides a high-resolution platform for prognostic signature detection. However, scRNA-seq is not practical in large cohorts due to its high cost and most single-cell experiments lack clinical phenotype information. Few studies have been reported to use external bulk transcriptome with survival time to guide the detection of key cell subtypes in scRNA-seq data. We proposed scRankXMBD, a computational framework to prioritize prognostic-associated cell subpopulations based on within-cell relative expression orderings of gene pairs from single-cell transcriptomes. scRankXMBD achieves higher precision and concordance compared with five existing methods. Moreover, we developed single-cell gene pair signatures to predict recurrence risk for patients individually. Our work facilitates the application of the rank-based method in scRNA-seq data for prognostic biomarker discovery and precision oncology. scRankXMBD is available at https://github.com/xmuyulab/scRank-XMBD. (XMBD:Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.)

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Fujian Province

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference71 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3