Identification of metal ion-binding sites in RNA structures using deep learning method

Author:

Zhao Yanpeng1,Wang Jingjing1,Chang Fubin1,Gong Weikang1,Liu Yang1,Li Chunhua1ORCID

Affiliation:

1. Beijing University of Technology Faculty of Environmental and Life Sciences, , Beijing 100124, China

Abstract

AbstractMetal ion is an indispensable factor for the proper folding, structural stability and functioning of RNA molecules. However, it is very difficult for experimental methods to detect them in RNAs. With the increase of experimentally resolved RNA structures, it becomes possible to identify the metal ion-binding sites in RNA structures through in-silico methods. Here, we propose an approach called Metal3DRNA to identify the binding sites of the most common metal ions (Mg2+, Na+ and K+) in RNA structures by using a three-dimensional convolutional neural network model. The negative samples, screened out based on the analysis for binding surroundings of metal ions, are more like positive ones than the randomly selected ones, which are beneficial to a powerful predictor construction. The microenvironments of the spatial distributions of C, O, N and P atoms around a sample are extracted as features. Metal3DRNA shows a promising prediction power, generally surpassing the state-of-the-art methods FEATURE and MetalionRNA. Finally, utilizing the visualization method, we inspect the contributions of nucleotide atoms to the classification in several cases, which provides a visualization that helps to comprehend the model. The method will be helpful for RNA structure prediction and dynamics simulation study.Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/Metal3DRNA.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RNAfcg: RNA Flexibility Prediction Based on Topological Centrality and Global Features;Journal of Chemical Information and Modeling;2024-09-14

2. A Point Cloud Graph Neural Network for Protein–Ligand Binding Site Prediction;International Journal of Molecular Sciences;2024-08-27

3. Gas-sensing riboceptors;RNA Biology;2024-07-17

4. Geometric deep learning for the prediction of magnesium-binding sites in RNA structures;International Journal of Biological Macromolecules;2024-03

5. Editorial: Insights in RNA: 2022;Frontiers in Genetics;2024-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3