MIMESIS: minimal DNA-methylation signatures to quantify and classify tumor signals in tissue and cell-free DNA samples

Author:

Romagnoli Dario1,Nardone Agostina2,Galardi Francesca2,Paoli Marta134,De Luca Francesca2,Biagioni Chiara15,Franceschini Gian Marco34,Pestrin Marta6,Sanna Giuseppina7,Moretti Erica5,Demichelis Francesca348,Migliaccio Ilenia2,Biganzoli Laura5,Malorni Luca25,Benelli Matteo15ORCID

Affiliation:

1. Bioinformatics Unit, Hospital of Prato , 59100 Prato , Italy

2. “Sandro Pitigliani” Translational Research Unit, Hospital of Prato , 59100 Prato , Italy

3. Department of Cellular , Computational and Integrative Biology, , 38123 Trento , Italy

4. University of Trento , Computational and Integrative Biology, , 38123 Trento , Italy

5. "Sandro Pitigliani" Medical Oncology Department, Hospital of Prato , 59100 Prato , Italy

6. Medical Oncology Unit, Azienda Sanitaria Universitaria Giuliano Isontina , 34170 Gorizia , Italy

7. Medical Oncology, Ospedale Civile SS Annunziata , 07100 Sassari , Italy

8. Institute for Computational Biomedicine, Weill Cornell Medicine , New York, NY , USA

Abstract

AbstractDNA-methylation alterations are common in cancer and display unique characteristics that make them ideal markers for tumor quantification and classification. Here we present MIMESIS, a computational framework exploiting minimal DNA-methylation signatures composed by a few dozen informative DNA-methylation sites to quantify and classify tumor signals in tissue and cell-free DNA samples. Extensive analyses of multiple independent and heterogenous datasets including >7200 samples demonstrate the capability of MIMESIS to provide precise estimations of tumor content and to enable accurate classification of tumor type and molecular subtype. To assess our framework for clinical applications, we designed a MIMESIS-informed assay incorporating the minimal signatures for breast cancer. Using both artificial samples and clinical serial cell-free DNA samples from patients with metastatic breast cancer, we show that our approach provides accurate estimations of tumor content, sensitive detection of tumor signal and the ability to capture clinically relevant molecular subtype in patients’ circulation. This study provides evidence that our extremely parsimonious approach can be used to develop cost-effective and highly scalable DNA-methylation assays that could support and facilitate the implementation of precision oncology in clinical practice.

Funder

Italian Ministry of Health

Fondazione CR Firenze

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3