A transformer-based genomic prediction method fused with knowledge-guided module

Author:

Wu Cuiling1ORCID,Zhang Yiyi1,Ying Zhiwen1,Li Ling1,Wang Jun1,Yu Hui2,Zhang Mengchen3,Feng Xianzhong12,Wei Xinghua13,Xu Xiaogang4

Affiliation:

1. Institute of Intelligent Computing, Zhejiang Lab , Hangzhou 311121, China

2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences , Changchun 130012, China

3. State Key Laboratory of Rice Biology, China National Rice Research Institute , Hangzhou 310006, China

4. School of Computer and Information Engineering, Zhejiang Gongshang University , Hangzhou 310018, China

Abstract

Abstract Genomic prediction (GP) uses single nucleotide polymorphisms (SNPs) to establish associations between markers and phenotypes. Selection of early individuals by genomic estimated breeding value shortens the generation interval and speeds up the breeding process. Recently, methods based on deep learning (DL) have gained great attention in the field of GP. In this study, we explore the application of Transformer-based structures to GP and develop a novel deep-learning model named GPformer. GPformer obtains a global view by gleaning beneficial information from all relevant SNPs regardless of the physical distance between SNPs. Comprehensive experimental results on five different crop datasets show that GPformer outperforms ridge regression-based linear unbiased prediction (RR-BLUP), support vector regression (SVR), light gradient boosting machine (LightGBM) and deep neural network genomic prediction (DNNGP) in terms of mean absolute error, Pearson’s correlation coefficient and the proposed metric consistent index. Furthermore, we introduce a knowledge-guided module (KGM) to extract genome-wide association studies-based information, which is fused into GPformer as prior knowledge. KGM is very flexible and can be plugged into any DL network. Ablation studies of KGM on three datasets illustrate the efficiency of KGM adequately. Moreover, GPformer is robust and stable to hyperparameters and can generalize to each phenotype of every dataset, which is suitable for practical application scenarios.

Funder

Research Program of Zhejiang Lab

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3