P-CSN: single-cell RNA sequencing data analysis by partial cell-specific network

Author:

Wang Yan1,Xuan Chenxu1,Wu Hanwen1,Zhang Bai1,Ding Tao2,Gao Jie1

Affiliation:

1. School of Science, Jiangnan University , Wuxi 214122 , China

2. School of Mathematics Statistics and Physics, Newcastle University , Newcastle upon Tyne NE1 7RU , UK

Abstract

Abstract Although many single-cell computational methods proposed use gene expression as input, recent studies show that replacing ‘unstable’ gene expression with ‘stable’ gene–gene associations can greatly improve the performance of downstream analysis. To obtain accurate gene–gene associations, conditional cell-specific network method (c-CSN) filters out the indirect associations of cell-specific network method (CSN) based on the conditional independence of statistics. However, when there are strong connections in networks, the c-CSN suffers from false negative problem in network construction. To overcome this problem, a new partial cell-specific network method (p-CSN) based on the partial independence of statistics is proposed in this paper, which eliminates the singularity of the c-CSN by implicitly including direct associations among estimated variables. Based on the p-CSN, single-cell network entropy (scNEntropy) is further proposed to quantify cell state. The superiorities of our method are verified on several datasets. (i) Compared with traditional gene regulatory network construction methods, the p-CSN constructs partial cell-specific networks, namely, one cell to one network. (ii) When there are strong connections in networks, the p-CSN reduces the false negative probability of the c-CSN. (iii) The input of more accurate gene–gene associations further optimizes the performance of downstream analyses. (iv) The scNEntropy effectively quantifies cell state and reconstructs cell pseudo-time.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3