Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review

Author:

Sherkatghanad Zeinab1,Abdar Moloud2,Charlier Jeremy1,Makarenkov Vladimir1

Affiliation:

1. Departement d’Informatique, Universite du Quebec a Montreal , H2X 3Y7, Montreal, QC , Canada

2. Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University , 3216, Geelong, VIC , Australia

Abstract

AbstractCRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9) is a popular and effective two-component technology used for targeted genetic manipulation. It is currently the most versatile and accurate method of gene and genome editing, which benefits from a large variety of practical applications. For example, in biomedicine, it has been used in research related to cancer, virus infections, pathogen detection, and genetic diseases. Current CRISPR/Cas9 research is based on data-driven models for on- and off-target prediction as a cleavage may occur at non-target sequence locations. Nowadays, conventional machine learning and deep learning methods are applied on a regular basis to accurately predict on-target knockout efficacy and off-target profile of given single-guide RNAs (sgRNAs). In this paper, we present an overview and a comparative analysis of traditional machine learning and deep learning models used in CRISPR/Cas9. We highlight the key research challenges and directions associated with target activity prediction. We discuss recent advances in the sgRNA–DNA sequence encoding used in state-of-the-art on- and off-target prediction models. Furthermore, we present the most popular deep learning neural network architectures used in CRISPR/Cas9 prediction models. Finally, we summarize the existing challenges and discuss possible future investigations in the field of on- and off-target prediction. Our paper provides valuable support for academic and industrial researchers interested in the application of machine learning methods in the field of CRISPR/Cas9 genome editing.

Funder

Fonds Québécois de la Recherche sur la Nature et les Technologies

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3