DeepICSH: a complex deep learning framework for identifying cell-specific silencers and their strength from the human genome

Author:

Zhang Tianjiao1ORCID,Li Liangyu1ORCID,Sun Hailong1,Xu Dali1,Wang Guohua1

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University , Harbin 150040 , China

Abstract

Abstract Silencers are noncoding DNA sequence fragments located on the genome that suppress gene expression. The variation of silencers in specific cells is closely related to gene expression and cancer development. Computational approaches that exclusively rely on DNA sequence information for silencer identification fail to account for the cell specificity of silencers, resulting in diminished accuracy. Despite the discovery of several transcription factors and epigenetic modifications associated with silencers on the genome, there is still no definitive biological signal or combination thereof to fully characterize silencers, posing challenges in selecting suitable biological signals for their identification. Therefore, we propose a sophisticated deep learning framework called DeepICSH, which is based on multiple biological data sources. Specifically, DeepICSH leverages a deep convolutional neural network to automatically capture biologically relevant signal combinations strongly associated with silencers, originating from a diverse array of biological signals. Furthermore, the utilization of attention mechanisms facilitates the scoring and visualization of these signal combinations, whereas the employment of skip connections facilitates the fusion of multilevel sequence features and signal combinations, thereby empowering the accurate identification of silencers within specific cells. Extensive experiments on HepG2 and K562 cell line data sets demonstrate that DeepICSH outperforms state-of-the-art methods in silencer identification. Notably, we introduce for the first time a deep learning framework based on multi-omics data for classifying strong and weak silencers, achieving favorable performance. In conclusion, DeepICSH shows great promise for advancing the study and analysis of silencers in complex diseases. The source code is available at https://github.com/lyli1013/DeepICSH.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Science Foundation for Distinguished Young Scholars

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference35 articles.

1. Long-distance repression by human silencers: chromatin interactions and phase separation in silencers;Zhang;Cell,2022

2. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes;Ogbourne;Biochem J,1998

3. Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene;Li;Proc Natl Acad Sci U S A,1993

4. Identification of cis-regulatory elements for MECP2 expression;Liu;Hum Mol Genet,2006

5. Functional validation of a constitutive autonomous silencer element;Qi;PloS One,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3