Affiliation:
1. Fresh Wind Biotechnologies Inc. (Tianjin) , Tianjin , China
2. Fresh Wind Biotechnologies USA Inc. , Houston, TX , USA
Abstract
Abstract
Accurate prediction of TCR-pMHC binding is important for the development of cancer immunotherapies, especially TCR-based agents. Existing algorithms often experience diminished performance when dealing with unseen epitopes, primarily due to the complexity in TCR-pMHC recognition patterns and the scarcity of available data for training. We have developed a novel deep learning model, ‘TCR Antigen Binding Recognition’ based on BERT, named as TABR-BERT. Leveraging BERT's potent representation learning capabilities, TABR-BERT effectively captures essential information regarding TCR-pMHC interactions from TCR sequences, antigen epitope sequences and epitope-MHC binding. By transferring this knowledge to predict TCR-pMHC recognition, TABR-BERT demonstrated better results in benchmark tests than existing methods, particularly for unseen epitopes.
Funder
Fresh Wind Biotechnologies USA Inc.
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献