Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks

Author:

Shi Xuejing1,Zhu Juntong1,Long Yahui2,Liang Cheng1

Affiliation:

1. School of Information Science and Engineering, Shandong Normal University , Jinan, 250358 , China

2. Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR) , 8A Biomedical Grove, 138648 , Singapore

Abstract

Abstract Motivation: Recent advances in spatially resolved transcriptomics (ST) technologies enable the measurement of gene expression profiles while preserving cellular spatial context. Linking gene expression of cells with their spatial distribution is essential for better understanding of tissue microenvironment and biological progress. However, effectively combining gene expression data with spatial information to identify spatial domains remains challenging. Results: To deal with the above issue, in this paper, we propose a novel unsupervised learning framework named STMGCN for identifying spatial domains using multi-view graph convolution networks (MGCNs). Specifically, to fully exploit spatial information, we first construct multiple neighbor graphs (views) with different similarity measures based on the spatial coordinates. Then, STMGCN learns multiple view-specific embeddings by combining gene expressions with each neighbor graph through graph convolution networks. Finally, to capture the importance of different graphs, we further introduce an attention mechanism to adaptively fuse view-specific embeddings and thus derive the final spot embedding. STMGCN allows for the effective utilization of spatial context to enhance the expressive power of the latent embeddings with multiple graph convolutions. We apply STMGCN on two simulation datasets and five real spatial transcriptomics datasets with different resolutions across distinct platforms. The experimental results demonstrate that STMGCN obtains competitive results in spatial domain identification compared with five state-of-the-art methods, including spatial and non-spatial alternatives. Besides, STMGCN can detect spatially variable genes with enriched expression patterns in the identified domains. Overall, STMGCN is a powerful and efficient computational framework for identifying spatial domains in spatial transcriptomics data.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3