Demographic confounders distort inference of gene regulatory and gene co-expression networks in cancer

Author:

Ketteler Anna12,Blumenthal David B12ORCID

Affiliation:

1. Biomedical Network Science Lab , Department Artificial Intelligence in Biomedical Engineering, , Erlangen , Germany

2. Friedrich-Alexander-Universität Erlangen-Nürnberg , Department Artificial Intelligence in Biomedical Engineering, , Erlangen , Germany

Abstract

Abstract Gene regulatory networks (GRNs) and gene co-expression networks (GCNs) allow genome-wide exploration of molecular regulation patterns in health and disease. The standard approach for obtaining GRNs and GCNs is to infer them from gene expression data, using computational network inference methods. However, since network inference methods are usually applied on aggregate data, distortion of the networks by demographic confounders might remain undetected, especially because gene expression patterns are known to vary between different demographic groups. In this paper, we present a computational framework to systematically evaluate the influence of demographic confounders on network inference from gene expression data. Our framework compares similarities between networks inferred for different demographic groups with similarity distributions obtained for random splits of the expression data. Moreover, it allows to quantify to which extent demographic groups are represented by networks inferred from the aggregate data in a confounder-agnostic way. We apply our framework to test four widely used GRN and GCN inference methods as to their robustness w. r. t. confounding by age, ethnicity and sex in cancer. Our findings based on more than $ {44000}$ inferred networks indicate that age and sex confounders play an important role in network inference for certain cancer types, emphasizing the importance of incorporating an assessment of the effect of demographic confounders into network inference workflows. Our framework is available as a Python package on GitHub: https://github.com/bionetslab/grn-confounders.

Funder

German Federal Ministry of Education and Research

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3