A fast and accurate method for SARS-CoV-2 genomic tracing

Author:

Ma Wentai12,Shi Leisheng12,Li Mingkun12

Affiliation:

1. Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation , Beijing 100101 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

Abstract

Abstract To contain infectious diseases, it is crucial to determine the origin and transmission routes of the pathogen, as well as how the virus evolves. With the development of genome sequencing technology, genome epidemiology has emerged as a powerful approach for investigating the source and transmission of pathogens. In this study, we first presented the rationale for genomic tracing of SARS-CoV-2 and the challenges we currently face. Identifying the most genetically similar reference sequence to the query sequence is a critical step in genome tracing, typically achieved using either a phylogenetic tree or a sequence similarity search. However, these methods become inefficient or computationally prohibitive when dealing with tens of millions of sequences in the reference database, as we encountered during the COVID-19 pandemic. To address this challenge, we developed a novel genomic tracing algorithm capable of processing 6 million SARS-CoV-2 sequences in less than a minute. Instead of constructing a giant phylogenetic tree, we devised a weighted scoring system based on mutation characteristics to quantify sequences similarity. The developed method demonstrated superior performance compared to previous methods. Additionally, an online platform was developed to facilitate genomic tracing and visualization of the spatiotemporal distribution of sequences. The method will be a valuable addition to standard epidemiological investigations, enabling more efficient genomic tracing. Furthermore, the computational framework can be easily adapted to other pathogens, paving the way for routine genomic tracing of infectious diseases.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences, China

Capital Health Development and Research Special Programme

Key Collaborative Research Program of the Alliance of International Science Organizations

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3