epitope1D: accurate taxonomy-aware B-cell linear epitope prediction

Author:

da Silva Bruna Moreira123,Ascher David B124,Pires Douglas E V123

Affiliation:

1. Bio21 Institute, University of Melbourne Systems and Computational Biology, , Melbourne, Victoria , Australia

2. Baker Heart and Diabetes Institute Computational Biology and Clinical Informatics, , Melbourne, Victoria , Australia

3. School of Computing and Information Systems, University of Melbourne , Melbourne, Victoria , Australia

4. The School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane, Queensland , Australia

Abstract

Abstract The ability to identify B-cell epitopes is an essential step in vaccine design, immunodiagnostic tests and antibody production. Several computational approaches have been proposed to identify, from an antigen protein or peptide sequence, which residues are more likely to be part of an epitope, but have limited performance on relatively homogeneous data sets and lack interpretability, limiting biological insights that could otherwise be obtained. To address these limitations, we have developed epitope1D, an explainable machine learning method capable of accurately identifying linear B-cell epitopes, leveraging two new descriptors: a graph-based signature representation of protein sequences, based on our well-established Cutoff Scanning Matrix algorithm and Organism Ontology information. Our model achieved Areas Under the ROC curve of up to 0.935 on cross-validation and blind tests, demonstrating robust performance. A comprehensive comparison to alternative methods using distinct benchmark data sets was also employed, with our model outperforming state-of-the-art tools. epitope1D represents not only a significant advance in predictive performance, but also allows biologically meaningful features to be combined and used for model interpretation. epitope1D has been made available as a user-friendly web server interface and application programming interface at https://biosig.lab.uq.edu.au/epitope1d/.

Funder

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference36 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3