CRISPR-DIPOFF: an interpretable deep learning approach for CRISPR Cas-9 off-target prediction

Author:

Toufikuzzaman Md1ORCID,Hassan Samee Md Abul2ORCID,Sohel Rahman M1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology , Dhaka, 1205, Bangladesh

2. Department of Integrative Physiology, Baylor College of Medicine , Houston, TX 77030, USA

Abstract

Abstract CRISPR Cas-9 is a groundbreaking genome-editing tool that harnesses bacterial defense systems to alter DNA sequences accurately. This innovative technology holds vast promise in multiple domains like biotechnology, agriculture and medicine. However, such power does not come without its own peril, and one such issue is the potential for unintended modifications (Off-Target), which highlights the need for accurate prediction and mitigation strategies. Though previous studies have demonstrated improvement in Off-Target prediction capability with the application of deep learning, they often struggle with the precision-recall trade-off, limiting their effectiveness and do not provide proper interpretation of the complex decision-making process of their models. To address these limitations, we have thoroughly explored deep learning networks, particularly the recurrent neural network based models, leveraging their established success in handling sequence data. Furthermore, we have employed genetic algorithm for hyperparameter tuning to optimize these models’ performance. The results from our experiments demonstrate significant performance improvement compared with the current state-of-the-art in Off-Target prediction, highlighting the efficacy of our approach. Furthermore, leveraging the power of the integrated gradient method, we make an effort to interpret our models resulting in a detailed analysis and understanding of the underlying factors that contribute to Off-Target predictions, in particular the presence of two sub-regions in the seed region of single guide RNA which extends the established biological hypothesis of Off-Target effects. To the best of our knowledge, our model can be considered as the first model combining high efficacy, interpretability and a desirable balance between precision and recall.

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3