TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning

Author:

Wang Guangshuai123,Wu Tao1,Ning Wei1,Diao Kaixuan1,Sun Xiaoqin1,Wang Jinyu1,Wu Chenxu1,Chen Jing1,Xu Dongliang4,Liu Xue-Song15

Affiliation:

1. ShanghaiTech University School of Life Science and Technology, , Shanghai 201203 , China

2. Chinese Academy of Sciences Shanghai Institute of Biochemistry and Cell Biology, , Shanghai, China

3. University of Chinese Academy of Sciences , Beijing, China

4. Shanghai University of Traditional Chinese Medicine Department of Urology, Shuguang Hospital, , Shanghai 200120, China

5. Shanghai Clinical Research and Trial Center , Shanghai, China

Abstract

Abstract Major histocompatibility complex (MHC) class II molecules play a pivotal role in antigen presentation and CD4+ T cell response. Accurate prediction of the immunogenicity of MHC class II-associated antigens is critical for vaccine design and cancer immunotherapies. However, current computational methods are limited by insufficient training data and algorithmic constraints, and the rules that govern which peptides are truly recognized by existing T cell receptors remain poorly understood. Here, we build a transfer learning-based, long short-term memory model named ‘TLimmuno2’ to predict whether epitope-MHC class II complex can elicit T cell response. Through leveraging binding affinity data, TLimmuno2 shows superior performance compared with existing models on independent validation datasets. TLimmuno2 can find real immunogenic neoantigen in real-world cancer immunotherapy data. The identification of significant MHC class II neoantigen-mediated immunoediting signal in the cancer genome atlas pan-cancer dataset further suggests the robustness of TLimmuno2 in identifying really immunogenic neoantigens that are undergoing negative selection during cancer evolution. Overall, TLimmuno2 is a powerful tool for the immunogenicity prediction of MHC class II presented epitopes and could promote the development of personalized immunotherapies.

Funder

ShanghaiTech University

National Natural Science Foundation of China

Shanghai Science and Technology Commission

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3