ML-PLIC: a web platform for characterizing protein–ligand interactions and developing machine learning-based scoring functions

Author:

Zhang Xujun1,Shen Chao12ORCID,Wang Tianyue1,Deng Yafeng2,Kang Yu1ORCID,Li Dan1,Hou Tingjun1ORCID,Pan Peichen1ORCID

Affiliation:

1. Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, Zhejiang , China

2. Hangzhou Carbonsilicon AI Technology Co., Ltd , Hangzhou 310018, Zhejiang , China

Abstract

AbstractCracking the entangling code of protein–ligand interaction (PLI) is of great importance to structure-based drug design and discovery. Different physical and biochemical representations can be used to describe PLI such as energy terms and interaction fingerprints, which can be analyzed by machine learning (ML) algorithms to create ML-based scoring functions (MLSFs). Here, we propose the ML-based PLI capturer (ML-PLIC), a web platform that automatically characterizes PLI and generates MLSFs to identify the potential binders of a specific protein target through virtual screening (VS). ML-PLIC comprises five modules, including Docking for ligand docking, Descriptors for PLI generation, Modeling for MLSF training, Screening for VS and Pipeline for the integration of the aforementioned functions. We validated the MLSFs constructed by ML-PLIC in three benchmark datasets (Directory of Useful Decoys-Enhanced, Active as Decoys and TocoDecoy), demonstrating accuracy outperforming traditional docking tools and competitive performance to the deep learning-based SF, and provided a case study of the Serine/threonine-protein kinase WEE1 in which MLSFs were developed by using the ML-based VS pipeline in ML-PLIC. Underpinning the latest version of ML-PLIC is a powerful platform that incorporates physical and biological knowledge about PLI, leveraging PLI characterization and MLSF generation into the design of structure-based VS pipeline. The ML-PLIC web platform is now freely available at http://cadd.zju.edu.cn/plic/.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3