RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences

Author:

Chen Lei1ORCID,Chen Yuwei1

Affiliation:

1. College of Information Engineering, Shanghai Maritime University , Shanghai 201306 , People’s Republic of China

Abstract

Abstract Post-translational modification (PTM) occurs after a protein is translated from ribonucleic acid. It is an important living creature life phenomenon because it is implicated in almost all cellular processes. Identification of PTM sites from a given protein sequence is a hot topic in bioinformatics. Lots of computational methods have been proposed, and they provide good performance. However, most previous methods can only tackle one PTM type. Few methods consider multiple PTM types. In this study, a multi-label classification model, named RMTLysPTM, was developed to recognize four types of lysine (K) PTM sites, including acetylation, crotonylation, methylation and succinylation. The surrounding sites of a lysine site were selected to constitute a peptide segment, representing the lysine at the center. Deep analysis was conducted to count the distribution of 2-residues with fixed location across the four types of lysine PTM sites. By aggregating the distribution information of 2-residues in one peptide segment, the peptide segment was encoded by informative features. Furthermore, a prediction engine that can precisely capture the traits of the above representations was designed to recognize the types of lysine PTM sites. The cross-validation results on two datasets (Qiu and CPLM training datasets) suggested that the model had extremely high performance and RMTLysPTM had strong generalization ability by testing it on protein Q16778 and CPLM testing datasets. The model was found to be generally superior to all previous models and those using popular methods and features. A web server was set up for RMTLysPTM, and it can be accessed at http://119.3.127.138/.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3