Affiliation:
1. Institute of Medical Biometry and Statistics, University of Lübeck , Ratzeburger Allee 160, 23562, Lübeck , Germany
Abstract
AbstractIn longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions.
Funder
German Federal Ministry of Education and Research
e:Med Programme on Systems Medicine
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献