Prediction of multi-relational drug–gene interaction via Dynamic hyperGraph Contrastive Learning

Author:

Tao Wen1,Liu Yuansheng1,Lin Xuan23,Song Bosheng1,Zeng Xiangxiang1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University , Changsha, 410082 Hunan , China

2. School of Computer Science, Xiangtan University , Xiangtan, 411105 Hunan , China

3. Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education (Xiangtan University) , Xiangtan, 411105 Hunan , China

Abstract

Abstract Drug–gene interaction prediction occupies a crucial position in various areas of drug discovery, such as drug repurposing, lead discovery and off-target detection. Previous studies show good performance, but they are limited to exploring the binding interactions and ignoring the other interaction relationships. Graph neural networks have emerged as promising approaches owing to their powerful capability of modeling correlations under drug–gene bipartite graphs. Despite the widespread adoption of graph neural network-based methods, many of them experience performance degradation in situations where high-quality and sufficient training data are unavailable. Unfortunately, in practical drug discovery scenarios, interaction data are often sparse and noisy, which may lead to unsatisfactory results. To undertake the above challenges, we propose a novel Dynamic hyperGraph Contrastive Learning (DGCL) framework that exploits local and global relationships between drugs and genes. Specifically, graph convolutions are adopted to extract explicit local relations among drugs and genes. Meanwhile, the cooperation of dynamic hypergraph structure learning and hypergraph message passing enables the model to aggregate information in a global region. With flexible global-level messages, a self-augmented contrastive learning component is designed to constrain hypergraph structure learning and enhance the discrimination of drug/gene representations. Experiments conducted on three datasets show that DGCL is superior to eight state-of-the-art methods and notably gains a 7.6% performance improvement on the DGIdb dataset. Further analyses verify the robustness of DGCL for alleviating data sparsity and over-smoothing issues.

Funder

National Natural Science Foundation of China

The Science and Technology Innovation Program of Hunan Province

Hunan Provincial Natural Science Foundation of China

Key Research and Development Program of Changsha

Open Research Projects of Zhejiang Lab

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3