COMO: a pipeline for multi-omics data integration in metabolic modeling and drug discovery

Author:

Bessell Brandt1,Loecker Josh1,Zhao Zhongyuan1,Aghamiri Sara Sadat1,Mohanty Sabyasachi1,Amin Rada1,Helikar Tomáš1ORCID,Puniya Bhanwar Lal1ORCID

Affiliation:

1. Department of Biochemistry, University of Nebraska-Lincoln , NE , USA

Abstract

Abstract Identifying potential drug targets using metabolic modeling requires integrating multiple modeling methods and heterogeneous biological datasets, which can be challenging without efficient tools. We developed Constraint-based Optimization of Metabolic Objectives (COMO), a user-friendly pipeline that integrates multi-omics data processing, context-specific metabolic model development, simulations, drug databases and disease data to aid drug discovery. COMO can be installed as a Docker Image or with Conda and includes intuitive instructions within a Jupyter Lab environment. It provides a comprehensive solution for the integration of bulk and single-cell RNA-seq, microarrays and proteomics outputs to develop context-specific metabolic models. Using public databases, open-source solutions for model construction and a streamlined approach for predicting repurposable drugs, COMO enables researchers to investigate low-cost alternatives and novel disease treatments. As a case study, we used the pipeline to construct metabolic models of B cells, which simulate and analyze them to predict metabolic drug targets for rheumatoid arthritis and systemic lupus erythematosus, respectively. COMO can be used to construct models for any cell or tissue type and identify drugs for any human disease where metabolic inhibition is relevant. The pipeline has the potential to improve the health of the global community cost-effectively by providing high-confidence targets to pursue in preclinical and clinical studies. The source code of the COMO pipeline is available at https://github.com/HelikarLab/COMO. The Docker image can be pulled at https://github.com/HelikarLab/COMO/pkgs/container/como.

Funder

Defense Health Agency

National Institutes of Health

University of Nebraska Foundation

U.S. Department of Defense

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3