GAABind: a geometry-aware attention-based network for accurate protein–ligand binding pose and binding affinity prediction

Author:

Tan Huishuang1,Wang Zhixin12,Hu Guang34

Affiliation:

1. Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084 , China

2. Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University , Suzhou 215123 , China

3. MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University , Suzhou 215123 , China

4. Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development , Soochow University, Suzhou 215123 , China

Abstract

Abstract Protein–ligand interactions are increasingly profiled at high-throughput, playing a vital role in lead compound discovery and drug optimization. Accurate prediction of binding pose and binding affinity constitutes a pivotal challenge in advancing our computational understanding of protein–ligand interactions. However, inherent limitations still exist, including high computational cost for conformational search sampling in traditional molecular docking tools, and the unsatisfactory molecular representation learning and intermolecular interaction modeling in deep learning-based methods. Here we propose a geometry-aware attention-based deep learning model, GAABind, which effectively predicts the pocket–ligand binding pose and binding affinity within a multi-task learning framework. Specifically, GAABind comprehensively captures the geometric and topological properties of both binding pockets and ligands, and employs expressive molecular representation learning to model intramolecular interactions. Moreover, GAABind proficiently learns the intermolecular many-body interactions and simulates the dynamic conformational adaptations of the ligand during its interaction with the protein through meticulously designed networks. We trained GAABind on the PDBbindv2020 and evaluated it on the CASF2016 dataset; the results indicate that GAABind achieves state-of-the-art performance in binding pose prediction and shows comparable binding affinity prediction performance. Notably, GAABind achieves a success rate of 82.8% in binding pose prediction, and the Pearson correlation between predicted and experimental binding affinities reaches up to 0.803. Additionally, we assessed GAABind’s performance on the severe acute respiratory syndrome coronavirus 2 main protease cross-docking dataset. In this evaluation, GAABind demonstrates a notable success rate of 76.5% in binding pose prediction and achieves the highest Pearson correlation coefficient in binding affinity prediction compared with all baseline methods.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3