Structural interaction fingerprints and machine learning for predicting and explaining binding of small molecule ligands to RNA

Author:

Szulc Natalia A12,Mackiewicz Zuzanna13,Bujnicki Janusz M1,Stefaniak Filip1

Affiliation:

1. Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Str, 02-109 Warsaw , Poland

2. Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Str, 02-109 Warsaw , Poland

3. Laboratory of RNA Biology - ERA Chairs Group, International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Str, 02-109 Warsaw , Poland

Abstract

Abstract Ribonucleic acids (RNAs) play crucial roles in living organisms and some of them, such as bacterial ribosomes and precursor messenger RNA, are targets of small molecule drugs, whereas others, e.g. bacterial riboswitches or viral RNA motifs are considered as potential therapeutic targets. Thus, the continuous discovery of new functional RNA increases the demand for developing compounds targeting them and for methods for analyzing RNA—small molecule interactions. We recently developed fingeRNAt—a software for detecting non-covalent bonds formed within complexes of nucleic acids with different types of ligands. The program detects several non-covalent interactions and encodes them as structural interaction fingerprint (SIFt). Here, we present the application of SIFts accompanied by machine learning methods for binding prediction of small molecules to RNA. We show that SIFt-based models outperform the classic, general-purpose scoring functions in virtual screening. We also employed Explainable Artificial Intelligence (XAI)—the SHapley Additive exPlanations, Local Interpretable Model-agnostic Explanations and other methods to help understand the decision-making process behind the predictive models. We conducted a case study in which we applied XAI on a predictive model of ligand binding to human immunodeficiency virus type 1 trans-activation response element RNA to distinguish between residues and interaction types important for binding. We also used XAI to indicate whether an interaction has a positive or negative effect on binding prediction and to quantify its impact. Our results obtained using all XAI methods were consistent with the literature data, demonstrating the utility and importance of XAI in medicinal chemistry and bioinformatics.

Funder

National Science Centre in Poland

Foundation for Polish Science

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3