Good models borrow, great models steal: intellectual property rights and generative AI

Author:

Chesterman Simon12

Affiliation:

1. Faculty of Law, National University of Singapore

2. AI Governance, AI Singapore

Abstract

Abstract Two critical policy questions will determine the impact of generative artificial intelligence (AI) on the knowledge economy and the creative sector. The first concerns how we think about the training of such models—in particular, whether the creators or owners of the data that are “scraped” (lawfully or unlawfully, with or without permission) should be compensated for that use. The second question revolves around the ownership of the output generated by AI, which is continually improving in quality and scale. These topics fall in the realm of intellectual property, a legal framework designed to incentivize and reward only human creativity and innovation. For some years, however, Britain has maintained a distinct category for “computer-generated” outputs; on the input issue, the EU and Singapore have recently introduced exceptions allowing for text and data mining or computational data analysis of existing works. This article explores the broader implications of these policy choices, weighing the advantages of reducing the cost of content creation and the value of expertise against the potential risk to various careers and sectors of the economy, which might be rendered unsustainable. Lessons may be found in the music industry, which also went through a period of unrestrained piracy in the early digital era, epitomized by the rise and fall of the file-sharing service Napster. Similar litigation and legislation may help navigate the present uncertainty, along with an emerging market for “legitimate” models that respect the copyright of humans and are clear about the provenance of their own creations.

Funder

Ministry of Education, Singapore

Publisher

Oxford University Press (OUP)

Reference105 articles.

1. The Reasonable Robot

2. Catch me if you can: Effectiveness and consequences of online copyright enforcement;Aguiar;Information Systems Research,2018

3. Taming tech giants requires fixing the revolving door;Alfonsi;Kennedy School Review,2019

4. Franzen, grisham and other prominent authors sue OpenAI;Alter,2023

5. 598 U.S. ___ (Supreme Court of the United States);Andy Warhol Foundation for the Visual Arts, Inc. v. Goldsmith,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3