Purity Assessment of Commercially Available Crystalline Deoxynivalenol

Author:

Krska Rudolf1,Szente Elisabeth1,Freudenschuss Martin2,Hametner Christian3,Zöllner Peter4

Affiliation:

1. Institute for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Konrad Lorenz Str. 20, A-3430 Tulln, Austria

2. Biopure Referenzsubstanzen GmbH, Konrad Lorenzstr. 20, A-3430 Tulln, Austria

3. Institute of Applied Synthetic Chemistry, Section Organic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria

4. Bayer Cropscience GmbH, Product Technology–Analytics Frankfurt, Industriepark Höchst, G 836, D-65926 Frankfurt/Main, Germany

Abstract

Abstract Deoxynivalenol (DON) obtained from 2 commercial sources was characterized, and its purity was determined. The structural identity of DON was confirmed by 1 Hand 13C-nuclear magnetic resonance (NMR) spectroscopy, gas chromatography with mass spectrometric (GC/MS) detection, and infrared/attenuated total reflectance (IR/ATR) spectroscopy. NMR spectra showed shifts that varied from previously published data. However, we established a complete, unambiguous assignment for all signals. Chromatograms obtained by GC/MS were almost identical for both investigated samples and confirmed the structure of DON. Likewise, IR/ATR spectra verified the identity of DON. The degree of purity was determined by liquid chromatography (LC) with a variable wavelength detector, LC/MS/MS, GC with electron-capture detection (GC-ECD), and ultraviolet (UV) spectrophotometry. The purity check using LC showed a single peak in both chromatograms. With LC/MS/MS measurements, we could detect small amounts of impurities in the crystalline DON from both sources. In data obtained by GC-ECD, no differences in purity were observed. The UV measurements showed an absorption maximum at 217 nm. The mean εm of the extinction coefficients was calculated as 6727 (L/cm/mol) for DON (Sigma) and 6825 (L/cm/mol) for DON (Biopure). Finally, the purity of DON from the 2 commercial sources was calculated as >96 and >98%, respectively. Although the DON produced by both providers can be considered sufficiently pure for routine analysis of trichothecenes in food and feed, this work again demonstrated that the impurity of the solid mycotoxin constitutes the greatest contribution to the overall uncertainty of a mycotoxin calibrant.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3