Integrating Multilevel Functional Characteristics Reveals Aberrant Neural Patterns during Audiovisual Emotional Processing in Depression

Author:

Li Rong1,Yang Jiale12,Li Liyuan1,Shen Fei1,Zou Ting1,Wang Hongyu1,Wang Xuyang1,Li Jiyi1,Deng Chijun1,Huang Xinju1,Wang Chong1,He Zongling1,Lu Fengmei1,Zeng Ling2,Chen Huafu13

Affiliation:

1. The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China

2. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, PR China

3. Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of china, Chengdu 611731, PR China

Abstract

Abstract Emotion dysregulation is one of the core features of major depressive disorder (MDD). However, most studies in depression have focused on unimodal emotion processing, whereas emotional perception in daily life is highly dependent on multimodal sensory inputs. Here, we proposed a novel multilevel discriminative framework to identify the altered neural patterns in processing audiovisual emotion in MDD. Seventy-four participants underwent an audiovisual emotional task functional magnetic resonance imaging scanning. Three levels of whole-brain functional features were extracted for each subject, including the task-evoked activation, task-modulated connectivity, combined activation and connectivity. Support vector machine classification and prediction models were built to identify MDD from controls and evaluate clinical relevance. We revealed that complex neural networks including the emotion regulation network (prefrontal areas and limbic-subcortical regions) and the multisensory integration network (lateral temporal cortex and motor areas) had the discriminative power. Moreover, by integrating comprehensive information of local and interactive processes, multilevel models could lead to a substantial increase in classification accuracy and depression severity prediction. Together, we highlight the high representational capacity of machine learning algorithms to characterize the complex network abnormalities associated with emotional regulation and multisensory integration in MDD. These findings provide novel evidence for the neural mechanisms underlying multimodal emotion dysregulation of depression.

Funder

Sichuan Science and Technology Foundation

National Natural Science Foundation of China

Key Project of Research and Development of the Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3