Structural Plastic Changes of Cortical Gray Matter Revealed by Voxel-Based Morphometry and Histological Analyses in a Monkey Model of Central Post-Stroke Pain

Author:

Nagasaka Kazuaki12,Nemoto Kiyotaka3,Takashima Ichiro14,Bando Daigo14,Matsuda Keiji1,Higo Noriyuki1

Affiliation:

1. Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan

2. Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Niigata 950-3198, Japan

3. Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan

4. Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan

Abstract

Abstract Central post-stroke pain (CPSP) is a chronic pain caused by stroke lesions of somatosensory pathways. Several brain imaging studies among patients with CPSP demonstrate that the pathophysiological mechanism underlying this condition is the maladaptive plasticity of pain-related brain regions. However, the temporal profile of the regional plastic changes, as suggested by brain imaging of CPSP patients, as well as their cellular basis, is unknown. To investigate these issues, we performed voxel-based morphometry (VBM) using T1-weighted magnetic resonance imaging and immunohistochemical analysis with our established CPSP monkey model. From 8 weeks after a hemorrhagic lesion to the unilateral ventral posterolateral nucleus of the thalamus, the monkeys exhibited significant behavioral changes that were interpreted as reflecting allodynia. The present VBM results revealed a decrease in gray matter volume in the pain-related areas after several weeks following the lesion. Furthermore, immunohistochemical staining in the ipsilesional posterior insular cortex (ipsi-PIC) and secondary somatosensory cortex (ipsi-SII), where the significant reduction in gray matter volume was observed in the VBM result, displayed a significant reduction in both excitatory and inhibitory synaptic terminals compared to intact monkeys. Our results suggest that progressive changes in neuronal morphology, including synaptic loss in the ipsi-PIC/SII, are involved in theCPSP.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3