Alterations in white matter fiber tracts and their correlation with flying cadet behavior

Author:

Chen Xi1ORCID,Chu Qi1ORCID,Meng Qingbin1,Xu Peiran1,Zhang Shicong1

Affiliation:

1. Flight Technology College, Civil Aviation Flight University of China , 46 Nanchang road, Guanghan 618307 , China

Abstract

Abstract An increasing number of studies have shown that flight training alters the human brain structure; however, most studies have focused on gray matter, and the exploration of white matter structure has been largely neglected. This study aimed to investigate the changes in white matter structure induced by flight training and estimate the correlation between such changes and psychomotor and flight performance. Diffusion tensor imaging data were obtained from 25 flying cadets and 24 general college students. Data were collected in 2019 and 2022 and analyzed using automated fiber quantification. This study found no significant changes in the flight group in 2019. However, in 2022, the flight group exhibited significant alterations in the diffusion tensor imaging of the right anterior thalamic radiation, left cingulum cingulate, bilateral superior longitudinal fasciculus, and left arcuate fasciculus. These changes occurred within local nodes of the fiber tracts. In addition, we found that changes in fiber tracts in the 2022 flight group were correlated with the reaction time of the psychomotor test task and flight duration. These findings may help improve flight training programs and provide new ideas for the selection of excellent pilots.

Funder

National Nature Science Foundation of China

Sichuan Science and Technology Program

Foundation of General Program in Civil Aviation Flight University of China

Institute of Aviation Human Factors and Cognitive Neuroscience

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing Gray Matter Structural Networks Using Diffusion Tensor Imaging;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3