Affiliation:
1. Department of Psychology, Vanderbilt University , 111 21st Ave S, Nashville, TN 37240 , United States
Abstract
Abstract
Considerable research has been devoted to understanding the fundamental organizing principles of the ventral visual pathway. A recent study revealed a series of 3–4 topographical maps arranged along the macaque inferotemporal (IT) cortex. The maps articulated a two-dimensional space based on the spikiness and animacy of visual objects, with “inanimate-spiky” and “inanimate-stubby” regions of the maps constituting two previously unidentified cortical networks. The goal of our study was to determine whether a similar functional organization might exist in human IT. To address this question, we presented the same object stimuli and images from “classic” object categories (bodies, faces, houses) to humans while recording fMRI activity at 7 Tesla. Contrasts designed to reveal the spikiness-animacy object space evoked extensive significant activation across human IT. However, unlike the macaque, we did not observe a clear sequence of complete maps, and selectivity for the spikiness-animacy space was deeply and mutually entangled with category-selectivity. Instead, we observed multiple new stimulus preferences in category-selective regions, including functional sub-structure related to object spikiness in scene-selective cortex. Taken together, these findings highlight spikiness as a promising organizing principle of human IT and provide new insights into the role of category-selective regions in visual object processing.
Funder
National Institutes of Health
Vanderbilt Vision Research Center
Publisher
Oxford University Press (OUP)
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献