Hidden Markov Modeling Reveals Prolonged “Baseline” State and Shortened Antagonistic State across the Adult Lifespan

Author:

Chen Keyu12,Li Chaofan12,Sun Wei12,Tao Yunyun12,Wang Ruidi12,Hou Wen3,Liu Dong-Qiang12ORCID

Affiliation:

1. Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China

2. Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China

3. School of Mathematics, Liaoning Normal University, Dalian 116029, China

Abstract

Abstract The brain networks undergo functional reorganization across the whole lifespan, but the dynamic patterns behind the reorganization remain largely unclear. This study models the dynamics of spontaneous activity of large-scale networks using hidden Markov model (HMM), and investigates how it changes with age on two adult lifespan datasets of 176/157 subjects (aged 20–80 years). Results for both datasets showed that 1) older adults tended to spend less time on a state where default mode network (DMN) and attentional networks show antagonistic activity, 2) older adults spent more time on a “baseline” state with moderate-level activation of all networks, accompanied with lower transition probabilities from this state to the others and higher transition probabilities from the others to this state, and 3) HMM exhibited higher sensitivity in uncovering the age effects compared with temporal clustering method. Our results suggest that the aging brain is characterized by the shortening of the antagonistic instances between DMN and attention systems, as well as the prolongation of the inactive period of all networks, which might reflect the shift of the dynamical working point near criticality in older adults.

Funder

National Natural Science Foundation of China

Ministry of Education in China

Scientific Research Project of Department of Education of Liaoning Province

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3