Altered Dynamic Information Flow through the Cortico-Basal Ganglia Pathways Mediates Parkinson’s Disease Symptoms

Author:

Chiken Satomi1,Takada Masahiko2,Nambu Atsushi1

Affiliation:

1. Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI, Myodaiji, Okazaki 444-8585, Japan

2. Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan

Abstract

Abstract Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by dopamine deficiency. To elucidate network-level changes through the cortico-basal ganglia pathways in PD, we recorded neuronal activity in PD monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. We applied electrical stimulation to the motor cortices and examined responses in the internal (GPi) and external (GPe) segments of the globus pallidus, the output and relay nuclei of the basal ganglia, respectively. In the normal state, cortical stimulation induced a triphasic response composed of early excitation, inhibition, and late excitation in the GPi and GPe. In the PD state, cortically evoked inhibition in the GPi mediated by the cortico-striato-GPi “direct” pathway was largely diminished, whereas late excitation in the GPe mediated by the cortico-striato-GPe-subthalamo (STN)-GPe pathway was elongated. l-DOPA treatment ameliorated PD signs, particularly akinesia/bradykinesia, and normalized cortically evoked responses in both the GPi and GPe. STN blockade by muscimol injection ameliorated the motor deficit and unmasked cortically evoked inhibition in the GPi. These results suggest that information flow through the direct pathway responsible for the initiation of movements is largely reduced in PD and fails to release movements, resulting in akinesia/bradykinesia. Restoration of the information flow through the direct pathway recovers execution of voluntary movements.

Funder

MEXT KAKENHI

JSPS KAKENHI

AMED

JST CREST

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3