Affiliation:
1. Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
2. Service de Neurologie 1, Hôpital de la Pitié Salpêtrière, AP-HP, Paris, France
Abstract
Abstract
In early blind individuals, brain activation by a variety of nonperceptual cognitive tasks extends to the visual cortex, while in the sighted it is restricted to supramodal association areas. We hypothesized that such activation results from the integration of different sectors of the visual cortex into typical task-dependent networks. We tested this hypothesis with fMRI in blind and sighted subjects using tasks assessing speech comprehension, incidental long-term memory and both verbal and nonverbal executive control, in addition to collecting resting-state data. All tasks activated the visual cortex in blind relative to sighted subjects, which enabled its segmentation according to task sensitivity. We then assessed the unique brain-scale functional connectivity of the segmented areas during resting state. Language-related seeds were preferentially connected to frontal and temporal language areas; the seed derived from the executive task was connected to the right dorsal frontoparietal executive network; and the memory-related seed was uniquely connected to mesial frontoparietal areas involved in episodic memory retrieval. Thus, using a broad set of language, executive, and memory tasks in the same subjects, combined with resting state connectivity, we demonstrate the selective integration of different patches of the visual cortex into brain-scale networks with distinct localization, lateralization, and functional roles.
Funder
“Investissements d’avenir” program of the French National Research Agency
LABEX LIFESENSES
Publisher
Oxford University Press (OUP)
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献