Transient compartmentalization and accelerated volume growth coincide with the expected development of cortical afferents in the human neostriatum

Author:

Kostović Ivica12,Džaja Domagoj1234,Raguž Marina1256,Kopić Janja12,Blažević Andrea34,Krsnik Željka12ORCID

Affiliation:

1. Croatian Institute for Brain Research , School of Medicine, , 10000 Zagreb , Croatia

2. University of Zagreb , School of Medicine, , 10000 Zagreb , Croatia

3. Department of Anatomy and Clinical Anatomy , , 10000 Zagreb , Croatia

4. School of Medicine University of Zagreb , , 10000 Zagreb , Croatia

5. Department of Neurosurgery , , 10000 Zagreb , Croatia

6. University Hospital Dubrava , , 10000 Zagreb , Croatia

Abstract

Abstract The neostriatum plays a central role in cortico-subcortical circuitry underlying goal-directed behavior. The adult mammalian neostriatum shows chemical and cytoarchitectonic compartmentalization in line with the connectivity. However, it is poorly understood how and when fetal compartmentalization (AChE-rich islands, nonreactive matrix) switches to adult (AChE-poor striosomes, reactive matrix) and how this relates to the ingrowth of corticostriatal afferents. Here, we analyze neostriatal compartments on postmortem human brains from 9 postconceptional week (PCW) to 18 postnatal months (PM), using Nissl staining, histochemical techniques (AChE, PAS-Alcian), immunohistochemistry, stereology, and comparing data with volume-growth of in vivo and in vitro MRI. We find that compartmentalization (C) follows a two-compartment (2-C) pattern around 10PCW and is transformed into a midgestational labyrinth-like 3-C pattern (patches, AChE-nonreactive perimeters, matrix), peaking between 22 and 28PCW during accelerated volume-growth. Finally, compartmentalization resolves perinatally, by the decrease in transient “AChE-clumping,” disappearance of AChE-nonreactive, ECM-rich perimeters, and an increase in matrix reactivity. The initial “mature” pattern appears around 9 PM. Therefore, transient, a 3-C pattern and accelerated neostriatal growth coincide with the expected timing of the nonhomogeneous distribution of corticostriatal afferents. The decrease in growth-related AChE activity and transfiguration of corticostriatal terminals are putative mechanisms underlying fetal compartments reorganization. Our findings serve as normative for studying neurodevelopmental disorders.

Funder

Clinical and Translational Neuroscience

European Union through the European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3