Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution

Author:

Tian Qiyuan12ORCID,Bilgic Berkin123,Fan Qiuyun12,Ngamsombat Chanon1ORCID,Zaretskaya Natalia1245,Fultz Nina E1,Ohringer Ned A1,Chaudhari Akshay S6,Hu Yuxin6,Witzel Thomas12,Setsompop Kawin123,Polimeni Jonathan R123,Huang Susie Y123

Affiliation:

1. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States

2. Harvard Medical School, Boston, MA, United States

3. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

4. Department of Experimental Psychology and Cognitive Neuroscience, Institute of Psychology, University of Graz, Graz, Austria

5. BioTechMed-Graz, Austria

6. Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States

Abstract

Abstract Accurate and automated reconstruction of the in vivo human cerebral cortical surface from anatomical magnetic resonance (MR) images facilitates the quantitative analysis of cortical structure. Anatomical MR images with sub-millimeter isotropic spatial resolution improve the accuracy of cortical surface and thickness estimation compared to the standard 1-millimeter isotropic resolution. Nonetheless, sub-millimeter resolution acquisitions require averaging multiple repetitions to achieve sufficient signal-to-noise ratio and are therefore long and potentially vulnerable to subject motion. We address this challenge by synthesizing sub-millimeter resolution images from standard 1-millimeter isotropic resolution images using a data-driven supervised machine learning-based super-resolution approach achieved via a deep convolutional neural network. We systematically characterize our approach using a large-scale simulated dataset and demonstrate its efficacy in empirical data. The super-resolution data provide improved cortical surfaces similar to those obtained from native sub-millimeter resolution data. The whole-brain mean absolute discrepancy in cortical surface positioning and thickness estimation is below 100 μm at the single-subject level and below 50 μm at the group level for the simulated data, and below 200 μm at the single-subject level and below 100 μm at the group level for the empirical data, making the accuracy of cortical surfaces derived from super-resolution sufficient for most applications.

Funder

National Institutes of Health

Massachusetts General Hospital

Athinoula A. Martinos Center for Biomedical Imaging

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3