Altered white matter functional pathways in Alzheimer’s disease

Author:

Li Yilu12,Peng Jinzhong12,Yang Zhenzhen12,Zhang Fanyu12,Liu Lin12,Wang Pan12,Biswal Bharat B1234

Affiliation:

1. The Clinical Hospital of Chengdu Brain Science Institute , MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, , NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu , China

2. University of Electronic Science and Technology of China , MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, , NO. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu , China

3. Department of Biomedical Engineering , , 154 Summit Street, Newark 07102, NJ , United States

4. New Jersey Institute of Technology , , 154 Summit Street, Newark 07102, NJ , United States

Abstract

Abstract Alzheimer’s disease (AD) is associated with functional disruption in gray matter (GM) and structural damage to white matter (WM), but the relationship to functional signal in WM is unknown. We performed the functional connectivity (FC) and graph theory analysis to investigate abnormalities of WM and GM functional networks and corpus callosum among different stages of AD from a publicly available dataset. Compared to the controls, AD group showed significantly decreased FC between the deep WM functional network (WM-FN) and the splenium of corpus callosum, between the sensorimotor/occipital WM-FN and GM visual network, but increased FC between the deep WM-FN and the GM sensorimotor network. In the clinical groups, the global assortativity, modular interaction between occipital WM-FN and visual network, nodal betweenness centrality, degree centrality, and nodal clustering coefficient in WM- and GM-FNs were reduced. However, modular interaction between deep WM-FN and sensorimotor network, and participation coefficients of deep WM-FN and splenium of corpus callosum were increased. These findings revealed the abnormal integration of functional networks in different stages of AD from a novel WM-FNs perspective. The abnormalities of WM functional pathways connect downward to the corpus callosum and upward to the GM are correlated with AD.

Funder

National Natural Science Foundation of China

China MOST2030 Brain Project

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3