Relationship between the interlimb transfer of a visuomotor learning task and interhemispheric inhibition in healthy humans

Author:

Paparella Giulia1ORCID,De Riggi Martina2,Cannavacciuolo Antonio1ORCID,Colella Donato2ORCID,Costa Davide2,Birreci Daniele2,Passaretti Massimiliano2ORCID,Angelini Luca2ORCID,Guerra Andrea12ORCID,Berardelli Alfredo12ORCID,Bologna Matteo12ORCID

Affiliation:

1. IRCCS Neuromed , Via Atinense 18, Pozzilli, (IS) 86077 , Italy

2. Department of Human Neurosciences, Sapienza University of Rome , Viale dell’Università, 30, 00185 Rome , Italy

Abstract

Abstract The “interlimb transfer” phenomenon consists of improved performance of the trained and untrained contralateral limbs after unilateral motor practice. We here assessed whether a visuomotor learning task can be transferred from one hemisphere to the other, whether this occurs symmetrically, and the cortical neurophysiological correlates of this phenomenon, focusing on interhemispheric connectivity measures. We enrolled 33 healthy subjects (age range: 24–73 years). Participants underwent two randomized sessions, which investigated the transfer from the dominant to the nondominant hand and vice versa. Measures of cortical and intracortical excitability and interhemispheric inhibition were assessed through transcranial magnetic stimulation before and after a visuomotor task. The execution of the visuomotor task led to an improvement in motor performance with the dominant and nondominant hands and induced a decrease in intracortical inhibition in the trained hemisphere. Participants were also able to transfer the visuomotor learned skill. The interlimb transfer, however, only occurred from the dominant to the nondominant hand and positively correlated with individual learning-related changes in interhemispheric inhibition. We here demonstrated that the “interlimb transfer” of a visuomotor task occurs asymmetrically and relates to the modulation of specific inhibitory interhemispheric connections. The study results have pathophysiological, clinical, and neuro-rehabilitative implications.

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3